Toutes les actualités

Faire une recherche par mots-clefs

Le cristal - Joyau de la nature - Chef-d’œuvre du chimiste


Exposition temporaire du 22 février 2011 au 10 janvier 2012

à la collection des minéraux de l’UPMC – Sorbonne Universités

4 place Jussieu, 75005 PARIS

tel : 01 44 27 52 88

ouvert tous les sauf les mardi et jours fériés de 13h à 18h

 

Le monde souterrain recèle de bien surprenants objets. Enfouis dans des cryptes, des fours, des filons, ou des géodes se nichent des cristaux aux formes géométriques presque trop parfaites. Pour le néophyte qui les découvre, elles ne peuvent pas être naturelles. La collection de l’UPMC présente près de 1000 minéraux cristallisés choisis parmi les plus beaux connus.

Pour le scientifique, les cristaux sont un sujet d’étude bien complexe, depuis longtemps. Pour le chimiste, ils constituent la base de la chimie de l’état solide. La fabrication de cristaux est un enjeu tant pour la science que pour l’industrie. L’exposition temporaire, organisée dans le cadre de l’année internationale de la chimie (AIC), présente une introduction au monde cristallisé, plusieurs appareils utilisés et près de 130 réalisations de cristaux. On y trouve des cristaux indispensables dans l’industrie, comme ceux de YAG, GGG et KDP utilisés pour les lasers, ceux de quartz utilisés dans l’horlogerie ou bien ceux de silicium à la base de l’électronique. On y trouve bien d’autres comme les pierres précieuses « synthétiques » : rubis, émeraudes, saphirs et enfin… diamants. L’alchimiste a essayé de transformer le plomb en or, sans succès. Le chimiste a réussi, après plus d’un siècle d’efforts, à transformer le charbon en diamant. Cette exposition témoigne de la complexité et de la beauté du travail des chimistes impliqués dans les cristaux.

Exposition réalisée en collaboration avec l’école normale supérieure (ENS), l’école de chimie de Paris, le laboratoire de la matière condensée de Paris (CMCP) et l’institut de minéralogie et physique des milieux condensée (IMPMC) associé au CNRS.

Coordinateurs :  Dr Jean-Claude BOULLIARD, UPMC/IMPMC

Pr Michel QUARTON, UPMC/LCMCP

Comprendre la matière

Durant des siècles, l’homme a cherché à transformer le plomb en or. Il n’y est jamais parvenu. Il a fait mieux.

Il a réussi à transformer le charbon en diamant !

Cette prouesse est le résultat d’une longue quête, celle du chimiste. Elle consiste à comprendre et maîtriser les transformations de la matière. Cette quête a commencé dans l’Antiquité, elle se poursuit, aujourd’hui encore, plus que jamais, dans les laboratoires de chimie.

 

L’héritage de l’Antiquité : qualités et formes

L’essentiel de la philosophie grecque de la nature a été fondé sur le concept d’élément. Au 5è siècle av. J.-C., Empédocle propose une théorie de la matière basée sur quatre éléments-principes : l’eau, l’air, le feu et la terre. Environ un siècle plus tard, Platon y introduit la géométrie en associant à chaque élément une figure géométrique remarquable, un polyèdre, que l’on appelle maintenant solide platonicien. A l’eau il associe l’icosaèdre (a), à l’air l’octaèdre (b), au feu le tétraèdre (c) et à la terre le cube (d).

Après lui, Aristote décrète que chaque élément est dépositaire de deux des quatre qualités suivantes : l’humide, le sec, le chaud et le froid. Pur produit de l’imagination, la philosophie antique a inspiré durant des siècles les savants qui cherchaient à découvrir les arcanes de la matière minérale.

 

Le tableau de Mendeleïev : l’alphabet du chimiste

Une chimie basée sur les éléments-qualités, qui insuffleraient leurs propriétés à la matière, permettait d’imaginer beaucoup de discours pour expliquer ce que l’on voyait, sans qu’il soit possible de décider lequel était le bon. Au 18è siècle, grâce notamment aux travaux de Lavoisier (1743-1794), il est apparu que les éléments qui avaient un sens étaient ces corps chimiques purs qui ne peuvent pas être décomposés en corps plus simples. Au cours du 19è siècle, le nombre d’éléments identifiés s’accroît.

Vers 1870, le savant russe Mendeleïev présente les prémices d’un tableau dans lequel il numérote les éléments et les classe selon leurs comportements chimiques. Il met ainsi en évidence des périodicités. Pour peaufiner son tableau, il est obligé d’introduire des cases vides et il prédit que ces cases annoncent la découverte de nouveaux éléments. Ce qui a été confirmé. Certaines familles forment des colonnes dans le tableau. La colonne la plus à gauche, par exemple, est celle des alcalins.

La colonne la plus à droite est celle des gaz rares qui, très peu réactifs, jouent un rôle mineur en chimie. On établit aussi une séparation entre les métaux (à gauche) et les non métaux (à droite). La frontière est formée par les métalloïdes que sont le bore, le silicium, le germanium, l’arsenic, le tellure et le polonium. Aujourd’hui, on connaît 118 éléments, rangés dans le tableau de Mendeleïev. Pour le chimiste, ce tableau constitue une sorte d’alphabet, dont l’utilisation contribue au charme de la chimie de synthèse dans les 3 états de la matière.

 

Les états de la matière : 3 chapitres de la chimie

Le 19è siècle voit s’expliciter la notion d’état de la matière. Comme un lointain écho de l’Antiquité, chaque état  rappelle un élément-principe ancien : l’état gazeux évoque l’air ; l’état liquide, l’eau ; l’état de plasma, le feu ; et enfin, l’état solide, la terre. A chaque état correspond une chimie particulière.

La chimie des gaz a permis de dégager la notion d’atome. C’est la plus petite particule matérielle d’un élément. Ses dimensions sont de l’ordre de 0.0000000001 mètre. La chimie des gaz a aussi défini la molécule qui est un assemblage de plusieurs atomes liés entre eux par des liaisons bien précises.

La chimie des liquides concerne notamment l’eau et sa capacité extraordinaire de dissoudre un grand nombre de corps. Les atomes et molécules dissous peuvent présenter une charge électrique excédentaire ou déficitaire : on parle alors d’ions.  Les acides (sources d’ions H3O+) et les bases (sources d’ions OH-) jouent un rôle considérable dans la chimie en solution.

Le plasma désigne un gaz ou un mélange gazeux plus ou moins ionisé. Le feu est un plasma. Dans l’univers, c’est l’état le plus commun, sur notre planète l’ionosphère est un plasma. Cet état intéresse plutôt le physicien.

Le dernier état, l’état solide, présente de grands intérêts pratiques et économiques car il concerne la majorité des matériaux.

 

Comprendre la matière à l’état solide

A la découverte du cristal

Depuis que l’homme façonne le métal, il sait que ses propriétés varient selon les traitements qu’il a subis. Il sait aussi que la matière solide adopte parfois des formes géométriques aussi parfaites que celles évoquées par Platon : on trouve des minéraux en forme de cubes, de tétraèdres ou d’octaèdres. Depuis le début du 18è siècle, on appelle ces formes, des cristaux. Les cristaux peuplent le monde souterrain : les mines en ont fourni beaucoup. Les activités humaines produisent aussi des cristaux. Les alchimistes les voyaient apparaître lors de l’évaporation de solutions. Leur origine était bien mystérieuse jusqu’aux travaux de Jean-Baptiste Romé de L’Isle (1736-1790) et de René-Just Haüy (1743-1822). A la fin du 18è siècle, ces savants jettent les bases de la cristallographie. Selon le premier : « il n’est aucune substance qui puisse se soustraire aux lois de la cristallisation ». Selon le second les cristaux sont des empilements réguliers de «molécules intégrantes» identiques. Dès cette époque, deux communautés de savants s’intéressent à la cristallographie : les minéralogistes qui y puisent de quoi caractériser et diagnostiquer les minéraux et les chimistes qui essaient de deviner les formes des particules ultimes (les molécules) à partir des cristaux.

 

Cristaux moléculaires et cristaux réticulaires

Au 20è siècle, la vision du cristal évolue. Deux grandes familles sont distinguées. La première est celle des cristaux moléculaires qui sont des empilements de molécules qui peuvent exister hors du cristal (la glace par exemple). La seconde est celle des cristaux réticulaires où il n’existe pas de molécule indépendante : le cristal lui-même est une molécule géante dans laquelle on trouve des agencements réguliers (le sel NaCl par exemple). Les cristaux de minéraux sont surtout des cristaux réticulaires.

 

La cristallochimie

Dans le cristal réticulaire, le chimiste du solide identifie des arrangements locaux d’atomes qui sont de véritables briques élémentaires avec lesquelles il peut concevoir de nouvelles architectures cristallines. Ainsi la grande famille des silicates (70% du manteau terrestre) est basée sur un groupement qui associe un atome central de silicium entouré de 4 atomes d’oxygène, le tout formant un polyèdre : le tétraèdre SiO4. Dans les nésosilicates les tétraèdres sont isolés ; ils ne sont jamais liés à d’autres tétraèdres. Dans les sorosilicates, on a des groupes de deux ou plusieurs tétraèdres, dans les cyclosilicates les tétraèdres se groupent en anneaux, dans les inosilicates en chaînes, dans les phyllosilicates en feuillets et enfin dans les tectosilicates tous les oxygènes sont partagés entre deux tétraèdres.

 

Le défi des cristaux !

Des objectifs divers

Au 19è siècle, l’obtention de cristaux devient une spécialité des chimistes (français surtout) : Frémy obtient des rubis, Hautefeuille de l’émeraude, Verneuil de grands rubis. Le but ne se limite pas à la production de pierres précieuses ou à la recherche. Les cristaux possèdent des propriétés originales et utiles qui sont d’autant mieux exprimées qu’ils sont parfaits. Cette perfection est rarissime car des défauts perturbent l’arrangement régulier des atomes. Il est donc essentiel (mais difficile) d’obtenir des cristaux de qualité. Ces 50 dernières années, la fabrication de cristaux s’est considérablement développée afin de satisfaire les besoins technologiques: semi-conducteurs (électronique, photovoltaïque), optique (lasers, diodes électroluminescentes), horlogerie, joaillerie, usinage.

 

Les méthodes de cristallogenèse

Les techniques de croissance cristalline (ou cristallogenèse) se classent en 3 familles : à partir de l’état fondu, à partir d’une solution, par transport chimique.

 

Croissance à partir de l’état fondu

La méthode Verneuil : Elle consiste en un chalumeau (oxygène-hydrogène) dans lequel circule la poudre de la matière à cristalliser. En traversant la flamme, les grains fondent et se déposent sur un germe que l’on éloigne de la flamme en le faisant tourner sur lui-même, au fur et à mesure de la croissance.

La méthode par tirage de Czochralski : On part d’un bain fondu à une température très proche de la température de fusion. On met un germe froid en contact avec ce bain : une petite quantité de matière se solidifie au contact. On éloigne ensuite ce germe en le tournant sur lui-même. On obtient un cylindre.

La méthode de Kyropoulos : On part d’un bain fondu qu’on laisse refroidir. Lorsque l’on est à la température de fusion ou proche, on plonge un germe qui amorce la cristallisation. Il vaut mieux retirer le cristal formé avant que toute la matière se solidifie !

La méthode de la zone fondue : Un cylindre est parcouru par un système de chauffage local qui entraîne la fusion d’une petite zone qui se déplace verticalement. Cette méthode permet aussi de déplacer les impuretés : c’est aussi une méthode de purification.

La méthode de l’autocreuset : On part d’une poudre compacte dans un creuset que l’on refroidit. Un chauffage par micro-ondes fait fondre la partie centrale du creuset qui cristallisera au cours du refroidissement. On l’utilise pour les matériaux réfractaires.

 

Croissance à partir d’une solution

Dissolution aqueuse : Les premières expériences, les plus simples, sont réalisées en dissolvant un sel dans de l’eau. A partir d’une certaine quantité dissoute, la dissolution s’arrête : la solution est saturée. Cette quantité dépend de la température. Lors de l’évaporation ou lors du refroidissement de la solution, des cristaux apparaissent. Les meilleurs résultats sont obtenus si l’on met un cristal (un germe) au départ. Il deviendra de plus en plus grand.

Dissolution anhydre (sans eau) : Dans ces méthodes, on dissout le composé dans un bain de matière fondue (que l’on appelle fondant ou flux). On peut ainsi dissoudre, par exemple, de l’alumine dans de l’oxyde de plomb fondu. La plupart des procédés sont similaires à ceux en dissolution aqueuse. Dissolution hydrothermale : Le quartz a posé un problème inédit car à 573°C sa structure change. Toute croissance au-dessus conduit à l’apparition de défauts (macles). Il faut donc opérer en dessous de 573°C. Le « diluant » sauveur est à nouveau l’eau (qui joue un rôle majeur dans la genèse des cristaux naturels). La croissance s’effectue dans des autoclaves avec une zone où l’eau est à 400°C environ et une autre zone moins chaude où les germes croissent. C’est une opération à haut risque car la pression dans les autoclaves est très forte. Les autoclaves peuvent exploser !

 

Croissance par transport chimique

Transport gazeux : Certains corps ne fondent pas lorsqu’on les chauffe. Ils se transforment directement en gaz que l’on peut ensuite condenser. Dans une enceinte sous vide, le corps est vaporisé et des cristaux apparaissent dans une zone froide située à proximité.

Synthèse CVD (pour Chemical Vapor Deposition): La vaporisation n’est pas toujours aisée. On peut alors utiliser un gaz dont la molécule contient un atome de la matière à cristalliser. En créant un plasma proche du germe ces atomes sont libérés un par un et se fixent sur le germe.

 

Le diamant : d’un extrême à l’autre

En 1908, le chimiste Le Châtelier pouvait écrire que : « La production du diamant est un problème pour le chimiste moderne, le pendant de la pierre philosophale pour les alchimistes ». Depuis plus d’un siècle on savait que le diamant est du carbone plus dense que le graphite : il y eu beaucoup de tentatives d’obtention. Il faudra encore près de 50 ans pour concevoir des presses permettant d’atteindre les pressions et les températures suffisantes pour que la transformation du graphite en diamant advienne. A l’époque : 100 tonnes/cm2 et 2000°C environ.

A la fin du 20è siècle, des méthodes de croissance plus douces du diamant (par CVD) se développent. Les pressions sont maintenant de l’ordre d’un dixième de la pression atmosphérique ! Seule ombre au tableau : pour faire des bonnes synthèses CVD, il faut de bons germes, et donc sacrifier de bons cristaux qui, naturels, ont beaucoup plus de valeur que les synthétiques.

La charte

Tous les adhérents de Géopolis s'engagent à respecter notre charte visant à protéger les sites de récolte et valoriser leur collection de minéraux et/ou fossiles

En savoir plus

Dossiers juridiques

Géopolis édite des dossiers juridiques pour ses adhérents afin de répondre aux questions fréquentes posées sur le statut du minéraux, du prélèvement,...

En savoir plus

L'assurance

Disponible depuis la création de Géopolis en partenariat avec la MAIF, elle couvre les associations et adhérents pour leur manifestation ou sortie de terrain.

En savoir plus

Expositions

Géopolis conçoit et créé des expositions disponibles à la location en partenariat avec les plus grands chercheurs des domaines concernés en géologie, minéralogie,....

En savoir plus